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LOCAL ERROR CONTROL AND ITS EFFECTS 

ON THE OPTIMIZATION OF ORBITAL INTEGRATION 

INTRODUCTION 

Many computing systems which a re  used to determine the orbits of artificial 
earth satellites require numerical integration. Due to advances in the theory of 
perturbations and the concomitant increase in the complexity of the mathemati- 
cal model , highly efficient integration techniques a re  desirable and , in certain 
cases , necessary. 

The orbital equations under consideration a r e  of the form 

" - -Px + x -  
I IX/ I3  

in three space variables, where l l x l l  = (x' t y2 t z 2 ) % ,  p is the perturbation 
function and I-L is a constant. We will assume throughout that P is fairly com- 
plicated so that the efficiency of the integration is proportional to the total num- 
ber of derivative evaluations. (Also, for simplicity we assume that P is inde- 
pendent of the f i r s t  derivative A, i.e., P = P( t , x) ; see Appendix B.) 

The numerical method under consideration is a multistep process,  i.e., a 
method which approximates the solution of (1) by using formulas of the form 

k 
1 

k 
1 

n = k, k + 1, 

- where h is the stepsize, x i  - x (to t ih),  and a i  , pi a r e  constants. Formulas 
of this type define a linear k-step method (see Henrici 1962, pp. 295 ff.) , and 
are usually derived by the integration of a polynomial approximation of the 
derivative X. 
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Associated with (2) is a local truncation e r r o r  of the form 

where C E  [ t n  - k ,  tn],  C is a constant, and p is an integer called the order of the 
method, all depending on k , the number of "backpoints" used. 

It has been suggested (Soar, 1964) that controlling the local e r r o r  by varying 
the order and stepsize during the integration of the equations of motion (1) may 
yield gains in efficiency without sacrificing accuracy. For example, it is clear  
that the magnitude of (3) is sensitive to variations in p or  h . Suppose that 
during the integration, the magnitude of Rn becomes insignificant relative to 
the calculations being performed. Then an increase in the magnitude of h o r  a 
decrease in the magnitude of P,  either separately or in combination, may in- 
crease the efficiency of the integration without sacrificing accuracy. 

The purpose of this study then, is to develop techniques to automaticdly 
control the magnitude of Rn during the integration by varying the parameters 
p and 11, and to examine the effects" of these controls on the efficiency and 
accuracy of the process. 

Before discussing methods of estimating and controlling the local e r r o r ,  we 
formulate a commonly used integration model which was used to obtain the 
results.  

THE INTEGRATION FORMULAE 

We begin by remarking that in equation (2), if p, f 0 then knowledge of the 
solution xn is required on both sides of the equation and i s ,  in general ,  not 
explicitly solvable. Equations of this type (closed form) however have smaller 
associated truncation e r r o r s  as well as desirable stabilizing characterist ics;  
(Hull and Creemer , 1963). The well-known predictor-corrector algorithm 
utilizes formulas of this type by first computing an initial (predicted) approxi- 
mation of the solution using a similar formula with Po 
form iteratively until convergence is achieved. It can be shown that for suffi- 
ciently small h , the successive "corrected" values obtained by this process 

0 ,  then using the closed 

*It should be noted that local error control d o e s  not in general y ie ld  a quantitative appraisal of the 
accumulatcd error. A qualitative control o f  the accumulated error is poss ib lc  though, and in most 
c a s e s  is sufficient.  For a discuss ion on accumulated error est imations,  see  Henrici, 1962. 
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converge to the unique solution of the closed form equation provided the function 
being integrated is sufficiently smooth. 

Consider now the predictor-corrector formulas which a r e  derivable from 
Newton's backward difference interpolation polynomial (Henrici 1962 pp. 
2 9 1 - 29 3) : 

These are the Stormer-Cowell formulae expressed in te rms  of backward 
differences. The local truncation e r r o r s  associated with these formulae are 
given by ( 3 )  where p = q + 1 and C = mq 
eter q is fixed, (and hence the order p )  , then (4) and (5) can be written in the 
form of (2) by expressing the backward differences in te rms  of the ordinates X i .  

u ; + ~ .  We note that i f  the param- 

In particular,  for  q = 5 we have the Stormer-Cowell formulas of order 6: 

h2 
VXn = - 240 [317 x n - l  - 266 X n - 2  f 374 x n V 3  - 276 xn-4  

+ 109 x n P 5  - 3 X n - 6 ]  

h2 mxn = 240 [18 xn f 209 xn- l  + 4 xn-2  + 14 xn-3 - 6 xn-4 

(4) ' 

(5) ' 

It is clear that the coefficients in (4)' and (5) ' depend on the choice of order 
so that varying the order during the integration would mean producing a new set 
of coefficients for  each p .  It is for this reason that formulas of the type (4) and 

3 



(5) , where variations of the order can be made simply by varying the number 
of terms retained, were used in this study.(*) 

We note that before any of the above formulas could be used, a set of 
"starting" values of the solution must be computed.(**) For example, for 
equations (4)' and (5)I,  if the values xi (andhence X i ) ,  i = 0 ,  1, * . . 5 a r e  
known, then (4)' could be used to obtain a "predicted" value xpS (n = 6) and (5)' 
to obtain the successive corrections x:j , j = 1,2,3, - until convergence to 
same criterion 6 is achieved, i.e., until 

The process could then be repeated with n = 7 ,  8,  - - - e .  

LOCAL ERROR ESTIMATION 

Any considerations concerning the control of the local e r r o r  depend on the 
capability of obtaining a reasonable estimate of (3) during the integration. One 
of the most widely used approximations is based on the fact that if f (x) is an 
n-times continuously differentiable function, then there exists a 8, 0 < 6 < 1, 
such that 

if Ax is sufficiently small, we can approximate a high order derivative by a high 
order difference. In particular , we can write 

r r  ( * I  In actual practice, a modification of equations ( 4 )  and ( 5 )  known as the 

( *  * ) Experimentation has indicated that recently developcd high order Kungc-Kutta type formulas 

summed" form of the 
integration formulae was used.  This  modification is formulated in Appendix A. 

arc particularly suitcd for such purposes; see Shanks, 1966. 
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If suitable predictor-corrector formulas a r e  used, another technique 
available is based on comparing the predicted value x: with the finally accepted 
"corrected" value x;; in particular, it can be proven (Henrici, 1962) that for 
equations (4) and (5) , 

Rn '? K(x: - x:) , 

where K is a constant. This technique is known as Milne's method of estimating 
the local e r ro r .  

LOCAL ERROR CONTROL 

We consider now a specific technique which would enable one to control the 
magnitude of the local e r r o r  during the integration by varying the parameters 
p and h. Let TI  and T, be tolerances specifying the desired upper and lower 
bounds on the local e r r o r  , so that for any n , the local e r r o r  must satisfy 

T, I IR, /  I T I ,  where T, 5 TI . 

Controlling the local e r r o r  by varying the order can then be accomplished 
by determining whether condition (8) is satisfied for each n 

Rn 
i.e., i f  for some n ,  

T, decrease lhe order, or  if Rn T,, increase ilie aider. 

We note that varying the order alone is generally not sufficient for an effec- 
tive control. For  example , if for some n , Rn > T, and h is large , it may not 
be possible to satisfy (8) with any p ,  in which case the stepsize must be de- 
creased. (Also the danger of numerical instability increases considerably with 
large p ;  see references 5 and 6.) On the other hand, Rn < T, and p small would 
indicate that a larger  stepsize could be used. 

Controlling the local e r r o r  by varying the stepsize, in addition to varying 
the o rde r ,  can be accomplished as follows: Let L, and L, be l imits specifying 
the desired upper and lower bounds on the order , i.e. , 

L, 5 p 5 L, where L, I L, ; 

then, if at some point during the integration, p > L, , decrease the stepsize, o r  
if p < L,, increase the stepsize. 
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A local e r r o r  control designed in this way has the property that the param- 
eters T, ,  T,, L,, L, completely govern the degree and type - of control; i.e., 
the parameters TI and T, can be selected so as to effect any degree of control 
f rom none, to a continuous step by step control; likewise , the parameters L, And 
L, can be selected so that the control involves varying the order alone, varying 
the step alone, or  varying both. For example, if L, = L,, the control depends 
solely on variations in the stepsize. 

We remark that unlike varying the order ,  changes in the magnitude of the 
stepsize during the integration a re  usually not easily accomplished since a 
"memory" of equally spaced points is required at every step during the inte- 
gration. For  this reason a common technique is the "halving-doubling'' method 
where an "increase" o r  "decrease" in the stepsize is either half, o r  double the 
current stepsize. Then increasing the stepsize presents no problem i f  a suffi- 
cient number of backpoints are retained. Decreasing is usually accomplished by 
some interpolation technique o r  by using a single step method. 

OPTIMIZATION O F  STEPSIZE 

Restricting the variations of stepsize,  h , by a constant factor does not, in 
general, yield optimal stepsizes" , and hence the initial choice of interval could 
have a substantial effect on the total number of integration steps. For  example, 
suppose the halving-doubling method is being used and the order is held fixed. 
If for  some n , Rn > T I ,  the stepsize must be decreased. Let h o p  be the opti- 
mum (largest) value of h for which (8) is satisfied. We could then have the 
situation h /2  < h o p t <  h. Because of our restriction h/2 would be used, although 
this would result  in more integration steps than would be required if the optimum 
stepsize were used. Hence a variation of h which would better approximate its 
optimum value is desirable. One technique available (see Reference 4 for details 
and applications in the case of single-step methods) is the computation of the 
stepsize using the local e r r o r  estimate,  i.e., let CT be the "allowable" local 
e r r o r  f o r  each step,  where T, 5 u ST,. Variations in h can then be computed 
by using the relationship between G- and Rn Chp' ,x (  p t 2  ) ( 5 )  , viz., 

*The largest s t eps i ze  which a l lows  a prescribed loca l  error at a given point. 
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so that i f c  < Rn , the stepsize is decreased, o r  if Rn < cr the stepsize is in- 
creased, where the variation is approximately optimal with respect to the choice 
of (7. 

OPTIMIZATION OF ORDER 

A s  in the case of varying the stepsize, we see that varying the order by 
constant factor need not yield the optimal* order. F o r  example, suppose a 
variable order ,  constant step control is being used and the order is varied by 
*l. If for  some n ,  IRn I < T, , the order must be decreased. Let pop be the 
optimum (smallest) value of p for which (8) is satisfied. We could then have the 
situation 

Because of our restriction p - 1 would be used, although this would result 
in  more calculations than would be required at the optimum order.  Also , if we 
were using a variable step control in  addition to varying the order ,  it may occur 
that 

in which case the stepsize would be increased if popt  were used. One method 
which could be used to obtain the optimum order is to test the Iccal errm for 
various .orders until the optimum is established. For example, if the local e r r o r  
estimate used is given by (6) , then one could test Ch2VPxn 
the  smallest  value satisfying (8) is found. 

for  various p until 

GENERAL EFFICIENCY CONSIDERATIONS 

Let u s  examine some possible effects, advantages and disadvantages of the 
above mentioned controls on the efficiency of any integration, which will 
generally depend on the following: 

(a) Minimizing the number of integration steps, 
(b) Minimizing the number of corrector iterations required at each step 

*The  s m a l l e s t  order which a l lows  a prescr ibed local error. 
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(c) Minimizing other computational efforts required by the integration 
formulae being used, such as retaining only the significant t e rms  in (4) 
or  (5) during the integration. 

Further, we must consider 

(d) The computational effort and time involved in controlling the local e r ro r ,  
such as producing the required "memory" when changing the stepsize. 

We now examine the following controls: 

(I) A variable order,  fixed step control 

Since varying the order involves only varying the number of te rms  retained, 
this control has little effect on (d). Equation (7)  however, expressing the re -  
lationship between the local e r r o r  and t h e  'lpredicted-corrected" difference, 
indicates that controlling the local e r r o r  may substantially effect the total num- 
ber  of corrector iterations. In particular, an increase in order  at some point 
during the integration where the local e r r o r  is increasing could minimize any 
increase in the number of required iterations. 

Another possible advantage of this control is i ts  obvious effect on (c), and 
that given a stepsize, the order required to satisfy a given criterion on the local 
e r r o r  is automatically selected. 

A clear disadvantage of this control is that it has no effect on minimizing 
the number of integration steps. 

(11) A fixed order,  variable step control 

This control affects the number of corrector  iterations for the same reason 
as (I). It is c lear  that (a) and (d) a r e  affected, and we must consider the "trade- 
off" between these two, i.e., we must consider the gain in efficiency due to the 
larger stepsizes against the cost in changing the stepsize. Furthermore,  we 
have discussed two possible methods for varying the stepsize, viz., (i) halving- 
doubling, and (ii) step computation using the local e r r o r  estimate. In both cases  
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the necessary "memory" could be obtained by interpolation, but in method (ii) 
all the backpoints must be computed both when decreasing and increasing, as 
opposed half, o r  none, for  method (i). On the other hand, we have seen that 
method (ii) could be more effective in minimizing the integration step than 
method (i). 

Besides its possible effects on (a), another advantage of this control is 
that given an order,  the stepsize (possibly optimum) required to satisfy a given 
criterion on the local e r r o r  is automatically selected. 

(III) A variable order,  variable step control 

The control combines the effects on (I) and (11). A possible disadvantage 
of this control is that in allowing the order to vary before changing the step, 
smaller stepsizes may result, thereby adversely affecting (a), (as opposed to 
control (11)). 

A c lear  advantage of this control is that both the stepsize and order required 
to satisfy a given local e r r o r  cri terion are  automatically selected. 

EFFECTIVE ERROR CONTROL I N  ORBITAL INTEGRATION 

In general, the effectiveness nf a !oca! e r r o r  centre1 during the integration 
of a particular orbit depends on the degree and rate of change of the derivative 
j i ( P t 2 ) ( c )  , (and hence the local e r ror ) ,  during a revolution for  a fixed p and h .  

This change is governed by the orbital parameters a ,  the semi-major axis, 
and e ,  the eccentricity (Soar, 1964). In particular, for orbits with eccentri- 
city near  zero,  it can be expected that the local e r r o r  variation will be 
small  over a revolution, and that as the eccentricity becomes bounded away 
f rom zero,  this variation becomes more pronounced. Moreover, the larger  the 
semi-major axis is for a particular satellite, the slower the rate of change 
of the derivative. 

Assume now that during the computation of a particular orbit, some local 
e r r o r  cri terion is to be satisfied over the entire range of integration, (which may 
involve many revolutions), i.e., we wish to bound the local e r r o r  from above, so 
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a s  to res t r ic t ,  at  least qualitatively, the propagation of truncation e r ror .  As- 
sume also that the integration method used is of some fixed order ,  (as is 
generally the case when formulas of the type (4)' or (5)' are used), and that the 
stepsize is to be specified. In such a situation, one could insure the e r r o r  cri- 
terion will be satisfied and yet obtain some degree of efficiency, by integrating 
over a single revolution with various stepsizes, and selecting the largest step- 
size which satisfies the criterion over the entire revolution. For orbits with 
e 2 0 ,  this process could yield the optimal stepsize for the given order.  On the 
other hand, for orbits with e 2 E > 0, the stepsize selected in this manner would 
correspond to bounding the local e r r o r  at its maximum value over the revolution 
(e .g., at perigee) , and could result  in needless computation for those portions 
of the revolution where the local e r r o r  is smaller,  o r  at  its minimum, (e.g., 
near apogee). 

Consider now the effects of a continuous variable step control during the 
+ 

integration. In both cases cited above, i.e.,  e = 0 ,  o r  e 2 E > 0, an initial 
stepsize (possible optimum) satisfying the local e r r o r  criterion would be com- 
puted automatically, and furthermore, the stepsize would vary according to 
variations in the derivative. It will be seen in the numerical results that in both 
cases ,  under suitable conditions, such a control has a considerable effect on the 
efficiency. In particular, it will be seen that i f  a sufficiently large range 

in (8) is used, so that the local e r r o r  is allowed to range between these 
two l imits  before any interval modification is performed, the gains in efficiency 
due to the larger stepsizes will overshadow any loss due to changing the stepsize. 

(TI ' *J 

If, in addition to  the above, the order to be used could be specified, (as is 
generally the case when formulas of the type (4) o r  (5) are used), then it may 
be possible to obtain an optimal stepsize (or stepsizes) - order combination by 
integrating over a single revolution with various orders  and letting the stepsize 
vary during the revolution. In particular,  one could find that order which, 
together with a continuous step modification, effects the most efficient inte- 
gration. Examples of such a procedure will be given in the numerical results. 

Finally, let us  examine the effects of a continuous variable order control. 
We note again that since we a re  assuming that the number of evaluations of the 
derivative governs the overall efficiency, the effects on this control o r  (c) (in 
the previous section), and its possible adverse effects on (a) when used in con- 
junction with a variable step control, make this control ineffective from this 
point of view. If ,  however, a fixed step method is used, it will be seen that the 
effect of this control on the number of corrector  iterations can result  in con- 
siderable gains in efficiency. 
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NUMERICAL RESULTS 

In this section the results obtained by applying the various local e r r o r  con- 
trols during the integration of three selected orbit types will be examined. The 
formulation of the actual equations of motion (1) used is presented in Appendix By 
and a description of the computer program can be found in Reference 9. 

Before proceeding, we make the following remarks concerning the numerical 

(i) In actual practice, for simplicity of computation, instead of using an ap- 

computations: 

proximation for Rn (given by (6) in controlling the e r ro r ,  a bound on the local 
e r r o r  given by 

was used, where Vk-* is the last  backward difference retained in the computa- 
tions; (see Appendix A).  Since p = k t l ,  we have 

and thus the qualitative results obtained by using Un are the same as if Rn were 
used, and the same quantitative results could be obtained by using Rn and a 
smaller TI.  

(ii) The number of derivative evaluations for each integration was obtained 
by multiplying the total number of steps taken by the average number of predictor- 
corrector  iterations. 

(iii) The e r r o r  estimates tabulated were obtained by integrating (1) with 
P = 0, and comparing the results with the Keplerian solution. Since the effect 
of the perturbation function P on the accumulation of e r r o r  is generally small, 
the e r r o r  estimate obtained in this manner can be assumed to be a good estimate 
of the actual e r r o r  generated. 

(iv) All  computations were performed on the Univac 1108 computer using 
double-precision arithmetic. In the computations the following units were used : 

unit of length = 6378.388 Km. 
unit of time = 13.4472 Mins. 

W e  begin by tabulating (Table I) the results obtained by integrating the 
orbits with formulas of orders  7 ,  9 ,  11 and 13. These integrations were carried 
out with various stepsizes, where in each case  the stepsize used was increased 
until Un (see remark (i)) failed to satisfy the inequality 

IUnl “T, 
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over the entire range of integration, which was chosen arbitrarily to be 4000 mins. 
W e  have tabulated only the last  2 stepsizes tested, indicating the largest stepsize 
which passed the criterion, and the first stepsize which failed. 

Table I 

Fixed Order - Fixed Step 

T,  = .5 x 6 = .1 x lo-' ' (predictor-corrector tolerance) 

a 

6.7 

1.15 

8.5 

e 

.003 

.075 

.878 

Order 

7 

9 

11 

13 

7 

9 

11 

13 

7 

9 

11 

13 

St epsiz e 
(Mins .) 

5.0 
7.0* 

15.0 
17.0* 

24.0 
2600* 

22.0 
24.0* 

.4 

.5* 

.9 
1.0* 

1.2 
1.3* 

1.5 
1.6" 

.3 0 

.35* 

.40 

.45* 

.3 0 

.35* 

.20 

.25* 

No. of 
Der. Eval. 

798 
569 

262 
23 1 

160 
147 

173 
158 

9998 
7998 

4440 
3996 

3327 
3070 

3081 
3043 

13344 
11483 

10005 
8902 

13340 
11433 

19992 
15992 

E st imat ed 
E r r o r  

.4 1 0 - ~  

.4 x 10- 

.3 x 

.8 X 

.9 x 

.3 x 10- l 1  

.9 x 10- l o  

.2 x 

.8 x 

.4 x 

.2 x 

.5 x 

.5 x 

.1 x 

.1 x 

.I 

.1 x 

.4 x 

.4 x 1 0 - ~  

.1 x 

.9 x 10- l o  

.4 io- '  

.4 x 10- l 1  

.3 x 10- 
*Integration with t h i s  s t e p s i z e  failed the criterion (12) for some n.  
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Concerning the results in Table I, we make the following observations: 

(i) For a given local e r r o r  criterion, increasing the order  does not gen- 
erally imply a larger l'allowableT' stepsize. Since the propagation of e r r o r  
(both truncation and round-off) influences the "smoothness" of the higher order 
differences (and hence our local e r r o r  estimate), one would expect this behavior 
both from the inaccuracies in the differences as well as an unstable p and h com- 
bination. We also note an increase in accuracy with the higher orders. A table 
demonstrating this behavior (for the case e 0) can be found in Reference 6 .  

(ii) The stepsizes resulting from our local e r r o r  criterion during the in- 
tegrations correspond to bounding the local e r r o r  at its maximum (perigee), 
although the local e r r o r  for most of the integration, particularly for the case 
e = .87, was considerably smaller than our upper bound. 

In Table I1 the results obtained by integrating our test orbits with a variable 
step control are tabulated. In particular, the stepsize was varied during each 
integration forcing Un to satisfy 

for  all n. The stepsize modification techniques used were the halving-doubling 
and optimum step computation where the "allowable" local e r r o r  used is designated 
by u (see table below); i.e., the step computation is given by 

Except for those cases  indicated by an asterisk, all integrations were performed 
with an initial stepsize (chosen arbitrarily) of .42 mins. = 1/2 in internal units. 
We have indicated the stepsize o r  stepsize range which occurred during the 
multistep integration as a result of our local e r r o r  control. 

Comparing the corresponding results in Tables I and11, we make the follow- 
ing observations: 

(i) For  the "low elc cases,  ( e  = ,003, .075), the stepsizes selected as a re- 
sult of the variable step control are comparable to the "optimum" stepsizes 
found by trial and e r r o r  in Table I. 

(ii) The dependence on the initial choice of stepsize in the halving- 
doubling type of step modification is demonstrated by the cases  in which the 
initial s tep was selected as a result 
(indicated by asterisks in Table 11). 
exactly half the stepsize indicated. 

of foreknowledge of the "optimumT7 step, 
In these cases,  the initial step used was 
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a 

6.7 

1.15 

__ 

e 

,003 

,075 

Table I1 

Fixed Order - Variable Step 

T,  = .5 x l o - ’  
- 

P 

- 

7 

9 

11 

13 

7 

9 

11 

- 

Type of 
Step Mod. 

H/D 
OPT 
OPT 

H/D 
H/D* 
OPT 
OPT 

H/D 
H/D* 
OPT 
OPT 

H/D 
H/D* 
OPT 
OPT 

H/D 
OPT 
OPT 

H/D 
OPT 
OPT 

H/D 
OPT 
OPT 

T, = .5 x 10 - 1 3  z -1 x 

.i 1 0 - ~  

.1 x 10- l o  

.I 10-9 

.1 x 1 0 - l 0  

.i x 10-9 

.1 x 10- lo 

.I x 1 0 - ~  

.1 x 10- l0  

.i io- ’  

.1 x 10- l o  

.I x i o - ’  

.1 x 10- l o  

.i io-’ 

.1 x 10-’O 

Stepsize 
(Range) 

_____ 

1 .7  
5.4 
3.0 

6.7 
14.0 
12.4 

8.4 

13.4 
23.0 
20.1 
15.1 

13.4 - 26.9 
23.0 
19.8 - 30.0 
13.9 - 26.8 

.42 

.42 

.42 

.42 

. G 1  

.42 

.84 
1.04 

.78 

No. of 
Der. Eval. 

2377 
744 

1320 

590 
281 
322 
471 

29 1 
167 
196 
260 

174 
165 
155 
159 

9516 
9516 
9516 

9514 
6514 
949 0 

4781 
3849 
5131 

Est. 
E r ro r  

.2 x 1 0 -  l 2  

.G i o - ’  

.1 x 1 0 - l 0  

.2 x l o - ”  

.1 x lo-’ 

.5 x io-’ 

.1 x 10- l0  

.2 x 10- 

.6 x lo-’ 

.I x io-’ 

.7 x l o - 1 1  

.5 x l o - ”  

.7 x lo-’  

.1 x 1 0 - 6  

.1 x 1 0 - 6  

.1 x 1 0 - 6  

.2 x 1 0  -’ 

.6 x l o - ’  

.2 x i o - ’  

.1 x 1 0  - 

.8 x l O - ’  

.6 x 

.8 x 

.4 x 1 0  - 9  

II/D = “Halving-doubling” 
OPT “Optimum Step Computation” 
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Table I1 (Continued) 

a 

8.5 

e 
- 

.87 

- 

P 

- 
13 

7 

9 

11 

13 

- 

Type of 
Step Mod. 

H/D 
OPT 
OPT 

H/D 
OPT 
OPT 

H/D 
OPT 
OPT 

H/D 
OPT 
OPT 

H/D 
OPT 
OPT 

0 

.i 

.1 x 10-'O 

.I 1 0 - ~  

.1 x 10-'O 

.I x 1 0 - ~  
-1 x 10-'O 

.I 1 0 - ~  

.1 x 10-'O 

.i x 10-9 

.1 x 10-10 

Stepsize 
(Range) 

.84 - 1.68 
1.20 

.9G 

.2 - 3.4 

.2 - 9.5 

.1 - 6.9 

.2 - 6.7 

.2 - 19.0 

.2 - 14.6 

.2 - 13.4 

.2 - 29.1 

.2 - 14.0 

.2 - 26.9 

.2 - 22.4 

.1 - 25.6 

No. of 
D e r .  Eval. 

4257 
3314 
4171 

3180 
2415 
3131 

1374 
1137 
1331 

875 
788 
907 

710 
661 
775 

Est. 
E r r o r  

.4 x 

.8 x l o - '  
A 1 0 - ~  

.7 x 
.2 x 10-7 
.3 x 

.7 x 1 0 - ~  

.7 x 10-7 

.1 x 10-8 

.G x 

.2 x 10-7 

.5 x 10-8 

.1 x 10-6 

.3 x 10-7 

.I x 10-7 

(iii) Fo r  the "high e" case, ( e  = .87), significant gains in efficiency due to 
the la rger  stepsizes was effected. (No loss in efficiency due to stepsize modifi- 
cation was noted. See the results concerning the degree of control below - 
Table 11.) The apparent loss in accuracy, (especially for  the higher orders),  
was expected since the e r r o r  control bounded the e r r o r  from below as well as 
above, whereas for the corresponding results in Table I, the local e r r o r  was 
insignificant for  most of the integration. 

(iv) In all cases, the optimum step computation type interval modification 
yielded fewer derivative evaluations than halving-doubling, with little o r  no 
loss  of accuracy. The effect of the magnitude of the parameter on the integra- 
tion was as expected, viz., the small  value yielded an increase in accuracy at 
a cost  of smaller  stepsizes. 

(v) In all cases,  the advantage of automatic selection of a stepsize re- 
quired to  satisfy the local e r r o r  criterion for the given order i s  evident. Also 
note that the f lbestf l  order,  (yielding the fewest derivative evaluations) to u s e  
with the variable step control may not be the same as the flbestll order to use 
for a fixed order ,  fixed step integration. 
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W e  now consider the effects of a variable-order, variable step control on 
our test orbits. The results of these integrations are given in Table 111. By 
the definition of this control, the order was allowed to vary between the limits 
L, andL, before any step modification was effected. In all cases, the "smallest" 
order  satisfying (12) in any given stepsize was used. All integrations we per- 
formed with an initial stepsize of .42 mins. and an initial order  of L, + (L, -L,)/2, 
(forcing the initial order  P to be in the interval (L,, L2)). We have indicated the 
stepsize and order  range which occurred during the integration as a result of 
the e r ro r  control. 

Table I11 

Variable Order - Variable Step 

T , =  .5x10-8 ~ ~ = . 5 ~ 1 0 - l ~  6 = . i x i o - 1 0  a = . i x 1 ~ - 9  

a 

6.7 

1.15 

8.5 

- 
e 

.003 

.075 

.87 

Ll -L2 

7 - 13 

9 - 13 

11 - 15 

7 - 13 

9 - 13 

11 - 15 

7 - 13 

9 - 13 

11 - 15 

Type of 
Step Mod. 

Stepsize 
(Range) 

3.3 
8.8 

6.7 
18.4 

13.4 
24.6 

.42 

.84 

.42 - .84 
1.04 

.84 
1.2 

.2 - 3.3 

.2 - 10.8 

.2 - 13.4 

.2 - 13.2 

.l- 26.8 

.l- 20.0 

Order  
;Range) 

8 
LO 

9 
11 

11 
11 - 15 

8 - 10 
LO 

9 - 10 
11 

12 - 13 
13 

7 - 13 
7 - 13 

9 - 13 
9 - 13 

11 - 15 
11 - 15 

No. of 
Der .  Eval. 

1184 
454 

588 
217 

289 
175 

9513 
4767 

4818 
3849 

4751 
3314 

2744 
2269 

1002 
10G7 

665 
742 

Est. 
E r r o r  

.9 x 1 0 - l ~  

.5 x 10-  

.2 x 10-  l 1  

.5 x 10- 

.2 x 10- 

.2 x 

.9 x 10-9 

.5 x 

.6 x 

.8 x 

.I x i o - '  

.8 x lo-' 

.4 x 

.I x 

.G x 

.3 x 

.3 x10-6 

.2 x10-6 
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Examining these results and comparing with the previous tables we note 
the following: 

(i) For  the "low err cases,  the stepsizes attained for  the various orders  
selected were comparable to the stepsizes obtained for  the corresponding 
orders  in Table 11. 

(ii) In all cases,  (especially e = .87), allowing the order  to vary before 
changing the stepsize resulted in a smaller 'cmeant' stepsize and thus a larger  
number of derivative evaluations; s o  that if the "best" order to use with a 
variable step control is known, this control results in a more efficient integra- 
tion than the variable order-variable step control. 

(iii) In all cases,  the advantage of automatic selection of both stepsize and 
order  required to satisfy the given local e r ro r  criterion is evident. 

In Table IV below, the effects of a variable order control alone or  the aver- 
age number of predictor-corrector iterations, (and hence the total number of 
derivative evaluations), and the total e r ror  is demonstrated. The order o r  order 
range obtained as a result of the control is indicated. 

Table IV 

Variable Order-Fixed Step and Fixed Order-Fixed Step 

T, = .5 T, = .5 1 0 - l ~  6 = .I x 1 0 - l ~  
-~ 

a 

- 
6.7 

1.1: 

8.5 

- 

e 

,003 

.075 

.87 

- 

Mode 

Vary Order 
Fixed Order 
Fixed Order 

Vary Order 
Fixed Order 
Fixed Order 

Vary Order 
Fixed Order 

Stepsiz e 

25.0 
25.0 
25.0 

1.2 
1.2 
1.2 

0.5 
0.5 

Order 

11 
7 
9 

11 
7 
9 

5 - 10 
7 

No. of 
Steps 

154 
158 
156 

3327 
3331 
3329 

8000 
7998 

_ _ ~  

Avg. no. of 
3-c Iterations 

1.00 
1.80 
1.00 

1.00 
1.94 
1.28 

1.00 
1.01 

Est. 
Error 

.1 x 

.2 x 

.4 

.5 x 1 0 - ~  

.I 

.2 

.2 x 1 0 - ~  

.5 
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Examining these results, we note the advantages of automatic selection of 
order both from the predictor-corrector point of view and from the accumulated 
e r r o r  which results by controlling the local error .  

Finally, we wish to consider the effects of varying the "allowable range" 
( T I ,  T , )  in the local e r r o r  control. In general, the smaller the interval ( T I ,  T 2 )  
is made, the greater  the frequency of interval and/or order modification, and 
one would expect, particularly in the case of a variable step control, that ef- 
ficiency gains due to the larger stepsizes resulting from the control could be 
offset by the cost in changing the stepsize, should such changes occur too fre- 
quently during the integration. 

In Table V, the results of integrating one of our test orbits with a fixed 
TI and various values for T, (approaching T ,  as a limiting value), are tabulated. 
A variable step control (halving-doubling) w a s  used, and the variations in the  
stepsize, along with the number of step changes and computation time (in min.) 

Table V 

Variable Step Control - Range Modification 

T I  = .5 x 6 = .1 x l o - ' '  

e 

.87 

- 

T2 

.5 x 1 0 - l 5  

.5 x 1 0 - l 3  

.5 x l o - '  

.1 x 10-'O 

.2 x l o - ' '  

.25 x l o - ' '  

.3 x l o - 1 o *  

.42 - 6.7 

.42 - 6.7 

.42 - 13.4 

.42 - 13.4 

.42 - 13.4 

.42 - 26.9 

.42 - 26.9 

No. of 
Der. Eval. 

1810 
1309 

886 
849 
832 
856 
892 

Computation 

.7 

.7 

.6 x 

.9 x 

.1 x 

.1 x 

.1 x 

.094 

.073 

.059 

.058 

.260 

.810 
2.10* 

a r e  presented for each integration. We  have indicated by an asterisk that 
integration in which a stepsize modification occurred approximately at each 
step, rendering the e r r o r  control completely ineffective, since the entire 
computation time w a s  governed by the backpoint computation. 

Examining these results, we see that as T, approaches T , ,  gains in efficiency 
due to the larger stepsizes i s  f i rs t  obtained, but as the range ( T I ,  T,) becomes 
smaller, these gains are offset by the cost  in changing the step, and finally, as 
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expected, causes the control to be completely ineffective. W e  remark, however, 
that the equations of motion used to obtain our results (see Appendix B) were not 
as complicated o r  lengthy as one might encounter in actual practice and in a 
more realistic situation, a much smaller i.nterva1 (TI, T 2 )  may be possible be- 
fore  the computing time is completely governed by the frequency of step 
modification. 

A s  a final note, we remark that although we have considered in our numeri- 
cal  results only a particular model of the perturbation function P it is expected 
that variations in this function, such as the inclusion of higher order  gravitational 
effects, should not affect the general qualitative behavior of the local e r r o r  and 
hence our results. 

SUMMARY AND CONCLUSIONS 

The problem of effecting an efficient and accurate orbital integration by a 
multistep process using the concept of controlling the local e r r o r  during the 
integration has been studied. It has been shown that during the integration, the 
parameters  p and h can be used to control the local e r r o r  in such a m7ay that the 
efficiency of the process is improved with no effective sacrifice in accuracy. 

In particular, it has been shown that if a sufficiently large range ( T I ,  T2) in 
the local e r r o r  is allowed, and an order  p is given, a variable step control can 
yield a good approximation of the optimal initial stepsize (with respect to the 
given order)  automatically, and can significantly improve the efficiency of the 
process by varying this step during the integration. Moreover, if a good ap- 
proximation of the ''best:! oi-der to use with a variable step - fixed order con- 
t rol  is known, this control effects the most efficient integration with respect to  
the various controls considered. On the other hand, a variable-order variable 
step control has the advantage that both the order  and step required to satisfy 
the given local e r r o r  criterion are automatically determined, and also effects 
a reasonably efficient integration. Finally, it has been seen that even a variable- 
order  fixed-step control, although ineffective in minimizing the number of inte- 
gration steps, can effect a more efficient integration than no control at all, by 
minimizing the number of predictor-corrector iterations. 

We conclude by remarking' that we have considered only a "local" optimiza- 
tion problem in the sense that the optimal stepsize is defined on a step-by-step 
basis  as being the largest stepsize satisfying a given local e r r o r  criterion at 
any given point. A more significant problem would be the consideration of the 
optimal stepsize (and/or order)  distribution over the entire range of integra- 
tion, defined on the basis of a criterion on the accumulated truncation error .  
Under some restrictive conditions, (among others, that we have only a single 
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differential equation), the problem of optimizing the mesh distribution i s  con- 
sidered in a paper by D. Morrison.* One of the basic problems one would en- 
counter in applying such techniques in our context is the requirement that a 
"memory" of equally spaced points be available at each step during the integra- 
tion. One solution that seems worth considering i s  the integration of divided- 
difference interpolation polynomials, (which do not require equally spaced 
points), for u s e  in numerical integration. 
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APPENDIX A 

DERIVATION OF THE "SUMMED" FORM O F  INTEGRATION FORMULAE 

A s  remarked earlier, by integrating Newton's backward difference inter- 
polation polynomial, the following multi-step formulas for the numerical inte- 
gration of (1) can be derived*, (we include formulas for the velocity in the event 
that P contains 2):  

(A) Equations for x -+ x 

Predictor: (Al )  xm + - 2xm + X m - 1  = h2 [uoxm t u l V x m  + 

Corrector: (A2) xm + - 2xm + X m - 1  = h2 xm+l  + a; vxm+l 

(B) Equations for  x - X 

- Corrector: (B2) x ~ + ~  - xm - h [yi x ~ + ~  YT v X m + l  

where the coefficients a , 
re1 ationships : 

y , y* a re  given by the following recurrence 

*Henrici ,  1962, pp 192-195 and 291-293- 
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It has been established (Henrici, 1960, 1962) that an algebraic equivalent 
of equations (A) & (B) , known as the "summed'' form of the integration formulae, 
considerably reduces the propagation of round-off e r r o r .  Formally, one can 
obtain this modification of equations (A) and (B) by applying the inverse differ- 
ence operators T1, V-2 defined by V-IV = I, T 2 V 2  = I , ( I the identity), t o  
both sides of these equations. In particular,  by applying T2 to both sides of 
equations (A) we obtain 

Predictor: X, + = h2 [ c 0 T 2 X  m t D , V - ~ X ~  t e 2 X m  t 
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Corrector: x,+~ = h2 [w: V-2x,+l t w;v- 'xrn+l t w;xm-l t 

m + 1 ]  
t . .. t D * v k - 2 2  q x r n  + k 

If we define ISrn, IISm by 

we have 

- 
Predictor: (Al)  ' xrn+ - h2 p J 0  =sm+ cT1 

and since 

- 
v 2  = v(Ism+l) - Is,+1 - Is rn = x m +  .. 1 

+ Ism I 

- 
x m + l  we have - " 

and since 

= IISm + - *Is, = v 'Srn+1 

we have 

= =s t Ism+I 

= =s t Is, t X m + 1  , 

+ 1 m 

m 

SO we have 
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Corrector: X, = h2 [CJ; ("S, + IS, + xmtl) + D; (X,+l I s m )  

I 26 

Likewise for equations (B) , applying the operator 0-l to both sides,  we obtain 

yo V-'Xmt+ y X t y2vx, t * * t ykv'-'xm] 
1 m  Predictor: xm 

+ y;vJx,tl t . -  t y;vk-lXm+l 1 Corrector: X, - - h [y;v-'Xmtl t Y ; X ~ + ~  

and using the definitions of IS, as above, we get 

Predictor: (Bl) '  X m +. 1 
t y2vxm t . - .  -t ykv'-'xm] 

and asbefore, since - - - IS, - - X m + l  

+ Is, we have - . X m + l  - 

and hence 

These are the "summed" forms of the integration formulae. (For details con- 
cerning the computational usage of these formulae,  see Reference 9.) 



We remark again that equations (Al) , (A2) and (Al ) ' y  (A2)' a re  algebraically 
equivalent so that for any fixed k any solution of (Al) , (A2) is a solution of 
(Al)  ' (A2) and vica versa;  and in particular the local truncation e r r o r s  
associated with these formulas are  the same; (likewise for (Bl)  
(B2) 7 

(B2) and (Bl ) ' ,  
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APPENDIX B 

EQUATIONS O F  MOTION 

The equations of motion used to obtain the numerical results a r e  given by 

f F1 + F’ P X  

R3 

.. 
- -  - - 

x -  

where X = (x, y, z) ,  R 
turbation due to the non-sphericity of the earth, and F2 the perturbation due to 
drag. F, = (Fix, Fly, F, z )  is given by 

IlXll - (x’ f y’ f z2)l”, p i s  a constant, F1 the per- 

- 

1 k E [JR’ ( 5 s  - 1) + H z ( 7 s  - 3) f 6 (-63s’ + 42s - 3) 
R6 

PH 
5R5 

+ - (35s’ -30s f 3) 

where s = ( z/R)’, J ,  H, K a r e  the 2 n d ,  3‘d and 4th harmonics of the earth’s 
potential field. 

- 
F, i s  of the form 
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where V r  is the relative velocity of the satellite, p the atmospheric density at 
the satellite position; and A, M and C, are the cross  sectional area,  mass  and 
drag coefficient of the satellite respectively. The actual numerical values of 
these constants which were used to obtain the results can be found in Refer- 
ence 9. 
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